Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.28.22276786

ABSTRACT

The COVID-19 pandemic catalyzed a revolution in vaccine development, leading to the testing and approval of several global vaccine platforms that have shown tremendous promise in curbing the pandemic. Yet, despite these successes, waning immunity, and the emergence of variants of concern linked to rising breakthrough infections among vaccinees, have begun to highlight opportunities to improve vaccine platforms and deployment. Real-world vaccine efficacy has highlighted the reduced risk of breakthrough infection and disease among individuals infected and vaccinated, otherwise referred to as hybrid immunity. The hybrid immunity points to the potential for more vigorous or distinct immunity primed by the infection and may confer enhanced protection from COVID-19. Beyond augmented hybrid induced neutralizing antibody and T cell immune responses, here we sought to define whether hybrid immunity may shape the functional humoral immune response to SARS-CoV-2 following Pfizer/BNT162b2 and Moderna mRNA1273 mRNA-based, and ChadOx1/AZ1222 and Ad26.COV2.S vector-based SARS-CoV-2 vaccination. Each vaccine exhibited a unique functional humoral immune profile in the setting of naive or hybrid immunity. However, hybrid immunity showed a unique augmentation in S2-domain specific functional humoral immunity that was poorly induced in the setting of naive immune response. These data highlight the immunodominant effect of the S1-domain in the setting of natural immunity, which is highly variable during viral evolution, and the importance of natural infection in breaking this immunodominance in driving immunity to the S2 region of the SARS-CoV-2 S2 domain that is more conserved across variants of concern.


Subject(s)
COVID-19 , Breakthrough Pain
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.20.22276647

ABSTRACT

Background: More than half the global population has been exposed to SARS-CoV-2. Naturally induced immunity influences the outcome of subsequent exposure to variants and vaccine responses. We measured anti-spike IgG responses to explore the basis for this enhanced immunity. Methods: A prospective cohort study in a South African community through the ancestral/beta/delta/omicron SARS-CoV-2 waves. Health seeking behaviour/illness were recorded and post-wave serum samples probed for IgG to Spike (CoV2-S-IgG). To estimate protective CoV2-S-IgG threshold levels, logistic functions were fit to describe the correlation of CoV2-S-IgG measured before a wave and the probability for seroconversion/boosting thereafter for unvaccinated and vaccinated adults. Findings: Despite little disease, 176/339 (51.9%) participants were seropositive following wave 1, rising to 74%, 89.8% and 97.3% after waves 2, 3 and 4 respectively. CoV2-S-IgG induced by natural exposure protected against subsequent SARS-CoV-2 infection with the greatest protection for beta and the least for omicron. Vaccination induced higher CoV2-SIgG in seropositive compared to naive vaccinees. Amongst seropositive participants, proportions above the 50% protection against infection threshold were 69% (95% CrI: 62, 72) following 1 vaccine dose, 63% (95% CrI: 63, 75) following 2 doses and only 11% (95% CrI:7, 14) in unvaccinated during the omicron wave. Interpretation: Naturally induced CoV2-S-IgG do not achieve high enough levels to prevent omicron infection in most exposed individuals but are substantially boosted by vaccination leading to significant protection. A single vaccination in those with prior immunity is more immunogenic than 2 doses in a naive vaccinee and thus may provide adequate protection.


Subject(s)
COVID-19
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.18.484436

ABSTRACT

Omicron, a highly transmissible SARS-CoV-2, emerged in November 2021. The high mutation rates within spike protein of Omicron raised concerns about increased breakthrough infections among the vaccinated. We tested cross-reactivity of antibodies induced by UB-612 against Omicron and other variants. After 2 doses, UB-612 elicited low levels of neutralization antibodies against ancestral virus and Omicron. A booster dose delivered 7-9 months after primary vaccination dramatically increased antibody levels, with only a 1.4-fold loss in neutralization titer against Omicron compared to the ancestral strain. Using a model bridging vaccine efficacy with ancestral virus RBD binding antibody responses, predicted efficacy against symptomatic COVID-19 after UB-612 booster is estimated at 95%. UB-612 is anticipated to be a potent booster against current and emerging SARS-CoV-2 variants.


Subject(s)
COVID-19
6.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1286644.v1

ABSTRACT

Background: Serological testing is used to quantify SARS-CoV-2 seroprevalence, guide booster vaccination and select patients for anti-SARS-CoV-2 antibodies therapy. However, our understanding of how serological tests perform as time passes after infection is limited.Methods: Four assays were compared in parallel: 1) the multiplexed spike, nucleoprotein and receptor binding domain Meso Scale Discovery (MSD) assay 2) the Roche Elecsys-Nucleoprotein assay (Roche-N) 3) the Roche Spike assay (Roche-S) and 4) the Abbott Nucleoprotein assay (Abbott-N) on serial positive monthly samples from hospital staff up to 200 days following infection as part of the Co-Stars study.Results: We demonstrate that 50% of the Abbott-N assays give a negative result after 175 days (median survival time 95% CI 168-185 days) while the Roche-N assay (93% survival probability at 200 days, 95% CI 88-97%) maintained seropositivity. The MSD spike (97% survival probability at 200 days, 95% CI 95-99%) and the Roche-S assay (95% survival probability at 200 days, 95% CI 93-97%) also remained seropositive. The best performing quantitative Roche-S assay showed no evidence of waning Spike antibody titres over 200-days.Conclusions: The Abbott-N assay fails to detect SARS-CoV-2 antibodies as time passes since infection. In contrast the Roche and the MSD assays maintained high sensitivity. The limitations of the Abbott assay must be considered in clinical decision making. The long duration of detectable neutralizing spike antibody titres by the quantitative Roche-S assay provides further evidence in support of long-lasting SARS-CoV-2 protection to pre-existing strains of SARS-CoV-2 following natural infection.Trial registration: Co-STARs study was registered with ClinicalTrials.gov on May 8th, 2020, with trial number NCT04380896 (www.clinicaltrials.gov, NCT04380896)

7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.08.21266760

ABSTRACT

SARS-CoV-2 vaccination protects against COVID-19. Antibodies and antigen-specific T-cell responses against the spike domain can be used to measure vaccine immune response. Individuals with lymphoma have defects in humoral and cellular immunity that may compromise vaccine response. In this prospective observational study of 457 participants with lymphoma, 52% of participants vaccinated on treatment had undetectable anti-spike IgG antibodies compared to 9% who were not on treatment. Marked impairment was observed in those receiving anti- CD20 antibody within 12 months where 60% had undetectable antibodies compared to 11% on chemotherapy, which persisted despite three vaccine doses. Overall, 63% had positive T-cell responses irrespective of treatment. Individuals with indolent B-cell lymphoma have impaired antibody and cellular responses that were independent of treatment. The significant reduction and heterogeneity in immune responses in these individuals emphasise the urgent need for immune response monitoring and alternative prophylactic strategies to protect against COVID- 19.


Subject(s)
COVID-19 , Lymphoma , Lymphoma, B-Cell
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.28.21265615

ABSTRACT

Some social settings such as households and workplaces, have been identified as high risk for SARS-CoV-2 transmission. Identifying and quantifying the importance of these settings is critical for designing interventions. A tightly-knit religious community in the UK experienced a very large COVID-19 epidemic in 2020, reaching 64.3% seroprevalence within 10 months, and we surveyed this community both for serological status and individual-level attendance at particular settings. Using these data, and a network model of people and places represented as a stochastic graph rewriting system, we estimated the relative contribution of transmission in households, schools and religious institutions to the epidemic, and the relative risk of infection in each of these settings. All congregate settings were important for transmission, with some such as primary schools and places of worship having a higher share of transmission than others. We found that the model needed a higher general-community transmission rate for women (3.3-fold), and lower susceptibility to infection in children to recreate the observed serological data. The precise share of transmission in each place was related to assumptions about the internal structure of those places. Identification of key settings of transmission can allow public health interventions to be targeted at these locations.


Subject(s)
COVID-19
9.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-902086.v1

ABSTRACT

A significant correlation has been shown between the binding antibody responses against original SARS-CoV-2-S-protein all performed in one laboratory and vaccine efficacy of four approved COVID-19 vaccines. We therefore assessed the immune response against original SARS-CoV-2 elicited by the adjuvanted S-Trimer vaccine, SCB-2019 + CpG/alum, in the same assay and laboratory. When compared with four approved vaccines immune responses to SCB-2019 predicted 81% − 94% efficacy against the original strain and 75–94% against the Alpha variant (B.1.1.7). Immunogenicity comparisons to original strain and variants of concern (VOC) should be considered as a basis for authorization of vaccines because efficacy studies now have predominantly VOC cases.


Subject(s)
COVID-19
10.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-832531.v1

ABSTRACT

Correlates of protection for COVID-19 vaccines are urgently needed to license and deploy additional vaccines. We measured immune responses to four COVID-19 vaccines of proven efficacy using a single serological platform calibrated to the international standard. IgG anti-Spike antibodies correlated significantly with efficacies for original virus and alpha variant and were highly correlated with ID50 neutralization in a validated pseudoviral assay. The protective threshold for each vaccine was calculated for IgG anti-Spike antibody. The mean protective threshold for all vaccine studies was 154 BAU/ml (95%CI 42-559), and for the vaccine studies with antibody distributions that enabled precise estimation of thresholds (i.e. leaving out 2-dose mRNA studies) was 60 BAU/ml (95%CI 35-102). We propose that the proportion of individuals with responses above the appropriate protective threshold together with the geometric mean concentration can be used in comparative non-inferiority studies with licensed vaccines to ensure that new vaccines will be efficacious.


Subject(s)
COVID-19
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.05.21258311

ABSTRACT

Individuals with lymphoid malignancies have an increased mortality risk from COVID-19. Paradoxically, this population is least likely to be protected by SARS-CoV-2 vaccination as a result of disease- or treatment-related immunosuppression. Current data on vaccine responses in persons with lymphoid malignancies is limited. PROSECO is a UK multi-centre prospective observational study evaluating COVID-19 vaccine immune responses in individuals with lymphoma. This early interim analysis details the antibody responses to first- and second- SARS-CoV-2 vaccination with either BNT162b2 (Pfizer-BioNTech) and ChAdOx1 (AstraZeneca), in 129 participants. Responses are compared to those obtained in healthy volunteers. The key findings of this interim analysis are first, 61% of participants who are vaccinated during or within 6 months of receiving systemic anti-lymphoma treatment, do not have detectable antibodies despite two doses of vaccine. Second, individuals with curable disease such has Hodgkin (100%) and aggressive B-cell non-Hodgkin lymphoma (81%) develop robust antibody levels to either first or second doses, when vaccinated > 6 months after treatment completion. Third, participants incurable, indolent lymphomas have reduced antibody levels to first and second vaccine doses, irrespective of treatment history. Finally, whilst there was no difference in antibody responses between BNT162b2 and ChAdOx1 in lymphoma participants, BNT162b2 induces 11-fold higher antibody responses than ChAdOx1 after the second dose in healthy donors. These findings serve to reassure the community that individuals with treated Hodgkin and aggressive B-NHL can develop antibody responses to SARS-CoV-2 vaccine. Simultaneously it also highlights the critical need to identify an alternative strategy against COVID-19 for those undergoing systemic anti-lymphoma treatment, and for individuals with indolent lymphomas.


Subject(s)
COVID-19 , Lymphoma , Hodgkin Disease , Mastocytosis, Systemic
12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.01.21250839

ABSTRACT

Abstract Background Ethnic and religious minorities have been disproportionately affected by SARS-CoV-2 worldwide. The UK strictly-Orthodox Jewish community has been severely affected by the pandemic. This group shares characteristics with other ethnic minorities including larger family sizes, higher rates of household crowding and relative socioeconomic deprivation. We studied a UK strictly-Orthodox Jewish population to understand how COVID-19 had spread within this community. Methods We performed a household-focused cross-sectional SARS-CoV-2 serosurvey specific to three antigen targets. Randomly-selected households completed a standardised questionnaire and underwent serological testing with a multiplex assay for SARS-CoV-2 IgG antibodies. We report clinical illness and testing before the serosurvey, seroprevalence stratified by age and gender. We used random-effects models to identify factors associated with infection and antibody titres. Findings A total of 343 households, consisting of 1,759 individuals, were recruited. Serum was available for 1,242 participants. The overall seroprevalence for SARS-CoV-2 was 64.3% (95% CI 61.6-67.0%). The lowest seroprevalence was 27.6% in children under 5 years and rose to 73.8% in secondary school children and 74% in adults. Antibody titres were higher in symptomatic individuals and declined over time since reported COVID-19 symptoms, with the decline more marked for nucleocapsid titres. Interpretation In this tight-knit religious minority population in the UK, we report one of the highest SARS-CoV-2 seroprevalence levels in the world to date. In the context of this high force of infection, all age groups experienced a high burden of infection. Actions to reduce the burden of disease in this and other minority populations are urgently required.


Subject(s)
COVID-19
13.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3739808

ABSTRACT

Background: Antibodies to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) have been shown to neutralize the virus in-vitro and prevent disease in animal challenge models upon re-exposure. However, current understanding of SARS-CoV-2 humoral dynamics and longevity is conflicting.Methods: The Co-Stars study prospectively enrolled 3679 healthcare workers to comprehensively characterize the kinetics of SARS-CoV-2 spike (S), receptor-binding-domain (RBD) and nucleoprotein (N) antibodies in parallel. Participants screening seropositive had serial monthly serological testing for maximum 7 months with the Mesoscale Discovery Assay. Survival analysis determined the proportion of sero-reversion while two hierarchical Gamma models predicted the upper- and lower-bounds of long-term antibody trajectory.Results: A total of 1163 monthly samples were provided from 349 seropositive participants. At 200 days post-symptoms, 99% of participants had detectable S-antibodies compared to 75% with detectable N-antibodies. S-antibody was predicted to remain detectable in 95% of participants until 465 days [95%CI 370-575] using a ‘continuous-decay’ model and indefinitely using a ‘decay-to-plateau’ model to account for antibody secretion by long-lived plasma cells. S-antibody titers correlated strongly with surrogate neutralization in-vitro (R2=0.72). N-antibodies, however, decayed rapidly with a half-life of 60 days [95%CI 52-68].Conclusions: The Co-STAR's study data presented here provides evidence for long-term persistence of neutralizing S-antibodies. This has important implications for the duration of functional immunity following SARS-CoV-2 infection. In contrast, the rapid decay of N-antibodies must be considered in future seroprevalence studies and public health decision-making. This is the first study to establish a mathematical framework capable of predicting long-term humoral dynamics following SARS-CoV-2 infection.Trial Registration: NCT04380896.Funding Statement: GOSH charity, Wellcome Trust (201470/Z/16/Z and 220565/Z/20/Z). GOSH NIHR Funded Biomedical Research Centre.Declaration of Interests: The authors have declared that no competing interests exist.Ethics Approval Statement: This study was approved by the UK Health Research Authority (www.hra.nhs.uk). Written informed consent was obtained from all participants before recruitment to the study.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.20.20235697

ABSTRACT

Background: Antibodies to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) have been shown to neutralize the virus in-vitro. Similarly, animal challenge models suggest that neutralizing antibodies isolated from SARS-CoV-2 infected individuals prevent against disease upon re-exposure to the virus. Understanding the nature and duration of the antibody response following SARS-CoV-2 infection is therefore critically important. Methods: Between April and October 2020 we undertook a prospective cohort study of 3555 healthcare workers in order to elucidate the duration and dynamics of antibody responses following infection with SARS-CoV-2. After a formal performance evaluation against 169 PCR confirmed cases and negative controls, the Meso-Scale Discovery assay was used to quantify in parallel, antibody titers to the SARS-CoV-2 nucleoprotein (N), spike (S) protein and the receptor-binding-domain (RBD) of the S-protein. All seropositive participants were followed up monthly for a maximum of 7 months; those participants that were symptomatic, with known dates of symptom-onset, seropositive by the MSD assay and who provided 2 or more monthly samples were included in the analysis. Survival analysis was used to determine the proportion of sero-reversion (switching from positive to negative) from the raw data. In order to predict long-term antibody dynamics, two hierarchical longitudinal Gamma models were implemented to provide predictions for the lower bound (continuous antibody decay to zero, 'Gamma-decay') and upper bound (decay-to-plateau due to long lived plasma cells, 'Gamma-plateau') long-term antibody titers. Results: A total of 1163 samples were provided from 349 of 3555 recruited participants who were symptomatic, seropositive by the MSD assay, and were followed up with 2 or more monthly samples. At 200 days post symptom onset, 99% of participants had detectable S-antibody whereas only 75% of participants had detectable N-antibody. Even under our most pessimistic assumption of persistent negative exponential decay, the S-antibody was predicted to remain detectable in 95% of participants until 465 days [95% CI 370-575] after symptom onset. Under the Gamma-plateau model, the entire posterior distribution of S-antibody titers at plateau remained above the threshold for detection indefinitely. Surrogate neutralization assays demonstrated a strong positive correlation between antibody titers to the S-protein and blocking of the ACE-2 receptor in-vitro [R2=0.72, p<0.001]. By contrast, the N-antibody waned rapidly with a half-life of 60 days [95% CI 52-68]. Discussion: This study has demonstrated persistence of the spike antibody in 99% of participants at 200 days following SARS-CoV-2 symptoms and rapid decay of the nucleoprotein antibody. Diagnostic tests or studies that rely on the N-antibody as a measure of seroprevalence must be interpreted with caution. Our lowest bound prediction for duration of the spike antibody was 465 days and our upper bound predicted spike antibody to remain indefinitely in line with the long-term seropositivity reported for SARS-CoV infection. The long-term persistence of the S-antibody, together with the strong positive correlation between the S-antibody and viral surrogate neutralization in-vitro, has important implications for the duration of functional immunity following SARS-CoV-2 infection.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
15.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.16.20155663

ABSTRACT

Introduction: Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) specific antibodies have been shown to neutralize the virus in-vitro. Understanding antibody dynamics following SARS-CoV-2 infection is therefore crucial. Sensitive measurement of SARS-CoV-2 antibodies is also vital for large seroprevalence surveys which inform government policies and public health interventions. However, rapidly waning antibodies following SARS-CoV-2 infection could jeopardize the sensitivity of serological testing on which these surveys depend. Methods: This prospective cohort study of SARS-CoV-2 humoral dynamics in a central London hospital analyzed 137 serial samples collected from 67 participants seropositive to SARS-CoV-2 by the Meso-Scale Discovery assay. Antibody titers were quantified to the SARS-CoV-2 nucleoprotein (N), spike (S-)protein and the receptor-binding-domain (RBD) of the S-protein. Titers were log-transformed and a multivariate log-linear model with time-since-infection and clinical variables was fitted by Bayesian methods. Results: The mean estimated half-life of the N-antibody was 52 days (95% CI 42-65). The S- and RBD-antibody had significantly longer mean half-lives of 81 days (95% CI 61-111) and 83 days (95% CI 55-137) respectively. An ACE-2-receptor competition assay demonstrated significant correlation between the S and RBD-antibody titers and ACE2-receptor blocking in-vitro. The time-to-a-negative N-antibody test for 50% of the seropositive population was predicted to be 195 days (95% CI 163-236). Discussion: After SARS-CoV-2 infection, the predicted half-life of N-antibody was 52 days with 50% of seropositive participants becoming seronegative to this antibody at 195 days. Widely used serological tests that depend on the N-antibody will therefore significantly underestimate the prevalence of infection following the majority of infections.


Subject(s)
Coronavirus Infections , COVID-19
16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.20.213249

ABSTRACT

BackgroundThe emergence of SARS-CoV-2 has led to the development of new serological assays that could aid in diagnosis and evaluation of seroprevalence to inform an understanding of the burden of COVID-19 disease. Many available tests lack rigorous evaluation and therefore results may be misleading. ObjectivesThe aim of this study was to assess the performance of a novel multiplexed immunoassay for the simultaneous detection of antibodies against SARS-CoV-2 trimeric spike (S), spike receptor binding domain (RBD), spike N terminal domain and nucleocapsid antigen and a novel pseudo-neutralisation assay. MethodsA multiplexed solid-phase chemiluminescence assay (Meso Scale Discovery) was evaluated for the simultaneous detection of IgG binding to four SARS-CoV-2 antigens and the quantification of antibody-induced ACE-2 binding inhibition (pseudo-neutralisation assay). Sensitivity was evaluated with a total of 196 COVID-19 serum samples (169 confirmed PCR positive and 27 anti-nucleocapsid IgG positive) from individuals with mild symptomatic or asymptomatic disease. Specificity was evaluated with 194 control serum samples collected from adults prior to December 2019. ResultsThe specificity and sensitivity of the binding IgG assay was highest for S protein with a specificity of 97.4% and sensitivity of 96.2% for samples taken 14 days and 97.9% for samples taken 21 days following the onset of symptoms. IgG concentration to S and RBD correlated strongly with percentage inhibition measured by the pseudo-neutralisation assay. ConclusionExcellent sensitivity for IgG detection was obtained over 14 days since onset of symptoms for three SARS-CoV-2 antigens (S, RBD and N) in this multiplexed assay which can also measure antibody functionality.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL